

SOLAPUR UNIVERSITY, SOLAPUR

FACULTY OF ENGINEERING & TECHNOLOGY

ELECTRICAL ENGINEERING

Syllabus for

M.E. (Electrical Engineering) PART-II, Semester III and IV w.e.f. Academic Year 2016-17 Choice Based Credit System Syllabus

SOLAPUR UNIVERSITY, SOLAPUR FACULTY OF ENGINEERINIG & TECHNOLOGY

CBCS structure of M.E Electrical Engineering W.E.F 2016-17

Semester III

Theory Course Name	HRS/Week			Credits	Examination Scheme					
Theory Course Munic	L	T P		Creatis	ISE	ESE		ICA	TOTAL	
Self Learning Subject	\$ (02 Hrs Self study / week)	1	-	3	30	70		-	100	
Sub total	-	1	-	3	30	70		-	100	
Laboratory										
						ES	ESE			
						POE	OE	1		
Lab Practice			2	1	-	-	-	25	25	
Dissertation Phase I : Synopsis Submission Seminar*	>	7	6@	3	\ -	-	-	75	75	
Dissertation Phase II : Term Work*		S é	6	3	-	-	-	100	100	
Dissertation Phase II Progress Seminar*	-		12	6	-	200	-	-	200	
Sub-Total		-	26	13	-	20	200		400	
Grand Total	2(self study)	1	26	16	30	27	270		500	

Note: Abbreviations: L- Lectures, P-Practicals, T-Tutorials, ISE –In Semester Exam, ESE- End semester Exam, ICA- Internal Continuous Assessment, ESE- University Examination (Theory/POE/OE Exam)

ISE-IN SEMESTER EVALUATION ESE-END SEMESTER EVALUATION

Note –

- \$- Being a Self Learning Subject, student shall prepare for examination as per specified syllabus(02 Hrs self study / week)
- *- For all activities related to dissertation Phase I (synopsis submission seminar and progress seminar) student must interact regularly every week with the advisor.
- Synopsis submission seminar shall cover detailed synopsis of the proposed work. Student shall submit Synopsis of the Dissertation Work only after delivering this seminar.
- Progress seminar shall be delivered capturing details of the work done by student for dissertation
- Student shall deliver all seminars using modern presentation tools. A hard copy of the report shall be submitted to the Department before delivering the seminar. A PDF copy of the report must be submitted to the advisor along with other details if any.

- Lab Practice shall include any of the below activities as recommended by Advisor and student shall submit a report after completion of the activity to Advisor– Software / hardware assignments, learning new software, literature survey, filed work, industrial training etc. related to dissertation work
- @Indicates contact hours of student for interaction with advisor
- Details of modes of assessment of seminar and dissertation shall be as specified in 7(III) of PG Engineering Ordinance of Solapur University, Solapur

• List Self Learning Subjects -

Sr.	Specialization	Self Learning Subjects						
1	Electrical Engineering	Smart Grid						

Note –

- Student must select Self Learning Module as per their specialization already selected in Semester I and II
- Modules may be added in the list of Self Learning Modules
- New Self Learning Subjects shall be added as and when required

SOLAPUR UNIVERSITY, SOLAPUR FACULTY OF ENGINEERINIG & TECHNOLOGY

CBCS structure of M.E Electrical Engineering W.E.F 2016-17

Semester IV

Laboratory Course Name	HRS/Week			Credits	Examination Scheme					
	L	Т	Р		ISE	ESE		ICA	TOTAL	
						ESE				
						POE	OE			
Dissertation Phase III :			°@	Λ				100	100	
Progress Seminar# (ISE)	-		8@	4	-	-	-	100	100	
Dissertation Phase IV:		-	12	6	1	-	-	200	200	
Term Work #(ISE)										
Final Submission of the Dissertation			10			200			200	
and Viva –Voce (ESE)	17	5	12	0		200	-	-	200	
Total	- (-	32	16	-	200		300	500	

Note: Abbreviations: L- Lectures, P- Practicals, T- Tutorials, ISE –In Semester Exam, ESE- End semester Exam, ICA- Internal Continuous Assessment, ESE- University Examination (Theory/POE/OE Exam)

Note –

- #- For all activities related to dissertation Phase II student must interact regularly every week with the advisor.
- Progress seminar shall be delivered capturing details of the work done by student for dissertation
- Student shall deliver all seminars using modern presentation tools. A hard copy of the report shall be submitted to the Department before delivering the seminar. A PDF copy of the report must be submitted to the advisor along with other details if any.
- Student must submit a hard copy of Project Report to the department
- @Indicates contact hours of student for interaction with advisor
- Details of modes of assessment of seminar and dissertation shall be as specified in 7(III) of PG Engineering Ordinance of Solapur University, Solapur

Teaching Scheme Tutorial – 1 Hr. /week Solapur University, Solapur M.E. (Electrical) Self Learning Subject Smart Grid

> Examination Scheme Theory Credits – 3.0 Tutorial Credits- 1.0

SECTION-I

Unit 1: Introduction to Smart Grid:

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. CDM opportunities in Smart Grid

Unit 2: Smart Grid Technologies: Part 1:

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformer

Unit 3: Smart Grid Technologies: Part 2:

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).

SECTION-II

Unit 4: Microgrids and Distributed Energy Resources:

Concept of microgrid, need & applications of microgrid, formation of microgrid, Issues of interconnection, protection & control of microgrid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuelcells, microturbines, Captive power plants, Integration of renewable energy sources.

Unit 5: Power Quality Management in Smart Grid:

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable

Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit

Unit 6: Information and Communication Technology for Smart Grid:

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols

• Text Books:

- 1. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable
- 2. Energy in Electric Power Systems", Wiley 2. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press
- 3. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko
- 4. Yokoyama, "Smart Grid: Technology and Applications", Wiley
- 5. Jean Claude Sabonnadière, NouredineHadjsaïd, "Smart Grids", Wiley Blackwell
- 6. Peter S. Fox Penner, "Smart Power: Climate Changes, the Smart Grid, and the Future of Electric Utilities", Island Press; 1 edition 8 Jun 2010
- 7. S. Chowdhury, S. P. Chowdhury, P. Crossley, "Microgrids and Active Distribution Networks." Institution of Engineering and Technology, 30 Jun 2009
- 8. Stuart Borlase, "Smart Grids (Power Engineering)", CRC Press

Reference Books/journal papers

- 1. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability: 1", Artech House Publishers July 2011
- 2. James Northcote, Green, Robert G. Wilson "Control and Automation of Electric Power Distribution Systems (Power Engineering)", CRC Press
- 3. Mladen Kezunovic, Mark G. Adamiak, Alexander P. Apostolov, Jeffrey George Gilbert "Substation Automation (Power Electronics and Power Systems)", Springer
- 4. R. C. Dugan, Mark F. McGranghan, Surya Santoso, H. Wayne Beaty, "Electrical Power System Quality", 2nd Edition, McGraw Hill Publication
- 5. Yang Xiao, "Communication and Networking in Smart Grids", CRC Press

